On Sums of Squares of the Riemann Zeta-function on the Critical Line

نویسنده

  • Aleksandar Ivić
چکیده

and some related integrals, where γ denotes imaginary parts of complex zeros of ζ(s), and where every zero is counted with its multiplicity (see also [5] and [7]). The interest is in obtaining unconditional bounds for the above sum, since assuming the Riemann Hypothesis (RH) the sum trivially vanishes. A more general sum than the one in (1.1) was treated by S.M. Gonek [3]. He proved, under the RH, that

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast methods to compute the Riemann zeta function

The Riemann zeta function on the critical line can be computed using a straightforward application of the Riemann-Siegel formula, Schönhage’s method, or Heath-Brown’s method. The complexities of these methods have exponents 1/2, 3/8 (=0.375), and 1/3 respectively. In this paper, three new fast and potentially practical methods to compute zeta are presented. One method is very simple. Its comple...

متن کامل

The True Order of the Riemann Zeta–function on the Critical Line

UDC 511.3+517.43+519.45 For the Riemann zeta-function on the critical line the terminal estimate have been proved, which had been conjectured by Lindelöf at the beginning of this Centure. The proof is based on the authors relations which connect the bilinear forms of the eigenvalues of the Hecke operators with sums of the Kloosterman sums. By the way, it is proved that for the Hecke series (whi...

متن کامل

Twisted Second Moments and Explicit Formulae of the Riemann Zeta-Function

Mathematisch-naturwissenschaftlichen Fakultät Doctor of Philosophy Twisted Second Moments and Explicit Formulae of the Riemann Zeta-Function by Nicolas Martinez Robles Verschiedene Aspekte, die analytische Zahlentheorie und die Riemann zeta-Funktion verbinden, werden erweitert. Dies beinhaltet: 1. explizite Formeln, die eine Verbindung zwischen der Möbiusfunktion und den nichttrivialen Nullstel...

متن کامل

A more accurate half-discrete Hardy-Hilbert-type inequality with the best possible constant factor related to the extended Riemann-Zeta function

By the method of weight coefficients, techniques of real analysis and Hermite-Hadamard's inequality, a half-discrete Hardy-Hilbert-type inequality related to the kernel of the hyperbolic cosecant function with the best possible constant factor expressed in terms of the extended Riemann-zeta function is proved. The more accurate equivalent forms, the operator expressions with the norm, the rever...

متن کامل

A Geometric Perspective on the Riemann Zeta Function’s Partial Sums

The Riemann Zeta Function, ζ(s), is an important complex function whose behavior has implications for the distribution of the prime numbers among the natural numbers. Most notably, the still unsolved Riemann Hypothesis, which states that all non-trivial zeros of the zeta function have real part one-half, would imply the most regular distribution of primes possible in the context of current theo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003